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Abstract. The finite N =4superconformal (scf) transformations areobtained and classified 
into three types by means of the permanent of specific matrices. The properties of the latter 
are studied in connection with complex plane non-Euclidean geometry. The explicit 
expression for the N = 4  SCf transformations allows them to be used as the transition 
functions for N = 4  split and non-split super Riemann surfaces and SCF embeddings. The 
existence of  the semigroup of sCf transformations is indicated. 

1. Introduction 

N = 4  superconformal (scf) symmetry in two dimensions was first employed to investi- 
gate the colour SU(2) string [ 11, but its covariant formulation in terms of the N = 4 
c=mcde! was added en!;, !D years !ater [2j. %.'he:, whe:: bui!ding rez!k!ic mode!s 
by superstring compactification [3], a relation between the N = 4 world-sheet s a  
symmetry and the N = 2 spacetime supersymmetry was established [4]. Moreover, the 
hidden N = 4  global s a  symmetry on the world-sheet was traced back [ 5 ]  even for 
the U(1) string [6 ] .  Recently, much progress has been made in studying N = 4  s a  
algebras [7] and their representation theory [SI. The N = 4  (rigid and local) supersym- 
metry in two-dimensional u-models is the largest possible one allowed by chiral 
invariance argument [9] and holonomy group considerations [IO]. Also, the anomaly 
term in the stress-energy tensor scf transformation corresponding to the s a  algebra 
central term exists only for N s 4  [11J  On the other hand the calculation of fermionic 
string amplitudes in the Polyakov approach [I21 comes to the finite-dimensional 
integration over asupermoduli space 1131 counting off the inequivalent super Riemann 
snrfaces (sasa) [!#. !%!!owing the !oca! d&i!icn [ ! 5 ]  !he .N=4  sxsr ca" be viewed 
as a collection of superdomains glued by N - 4  scr transformations [16] (we study 
this from the algebraic viewpoint here and do  not lay stress on the consistent N = 4 
string formulation which meets difficulties with ghosts, critical dimensions, etc. [l]). 

In this paper a detailed analysis of N = 4 scr symmetry peculiarities is carried out. 
An exact shape of the general finite N = 4 scr transformations corresponding to various 
types of N = 4 S R S ~  and playing some part in the above-mentioned investigations is 
obtained. Almost all results can be applied to lower Ns. 

In section 2 we rewrite the N = 4 scf conditions on a complex basis using the 
permanent of some matrices (we call them scf matrices) having specific properties 
which are examined in section 3. The new symmetry which is generated by the fractional 
linear transformations associated with scf matrices on  the complex plane is found in 
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section 4 where suitable analogues of the cross ratio and non-Euclidean distance are 
presented. In section 5 we express the N = 4 Berezinian via the permanent and outline 
scf transformation of N = 4 superdifferentials. The soul-extended analogue of the split 
N = 4 SRS transition functions is introduced in section 6. Weakening of invertibility 
results in the transformations which form a semigroup called an N = 4 scf semigroup. 
In section 7 we consider the transition functions for the non-split N = 4 S R S ~ ,  fractional 
linear transformations and the subsemigroup of transformations containing no even 
functions at all. Some generalities about the N = 4 scf semigroup are discussed in 
section 8. 

2. N = 4  scr conditions 

The complex (114)-dimensional superspace [l, 21 can be parametrized by one even ( 2 )  

and four odd (0,  - 0,) coordinates (we consider only a holomorphic sector). On a 
complex basis (8:=(0,*i0,)/fi, e$ =(0 ,* i0 , ) / f i )  the left superderivatives D;= 
8/30: + 0:a/az form the algebra {DT, D;} = 2S,a/az (i, j = 1,2), other anticommutators 
vanishing. Under superanalytic transformation Z + i(Z) which has no 2-dependence 
(see [I71 for the rigorous definitions), where Z = ( z , 0 7 , 0 ; )  E 6)1.4 the superderivatives 
transform as 

(1) D: = (D: 6~15; + ( D: 6;) 6; + ( ~ : i  - ( D: 5;) ;; - ( D; g;) i;)a/ ai .  
A superanalytic transformation is superconformal if the inhomogeneous term in ( I )  
becomes zero and superderivatives 0: transform covariantly [ l l ,  14-16]. Then, an 
N = 4 SRS can be defined locally as the (114)-dimensional complex supermanifold [17] 
patched from maps by means of the N = 4 scf transformation as the transition function 
on overlapping maps [15,16]. 

It follows from ( I )  that the N = 4 scf condition is 

0'; = ( D' ;?) 6; + (D:;;) 6;. (2) 
Manipulating superderivative algebra we derive 

a;/az+s'ta;;/az+6la;t/az=per H, ,+per  H, ,=perH, ,+per  H2> (3) 
scf iHl ,+scf iH2,  = s c f ; H 1 2 + ~ c f j H 2 2 = 0  (4) 

H:, HZ + H:,H:: = o ( 5 )  
where 

H: is the transposed matrix and HY is the matrix of minors. The permanent [18] is 
defined as 

per(: ; ) = a d + b c  (7) 

scf,(: i;) = ac 

scf2(: i;) = bd. 
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Thus it is the specific 4 X 4 block matrix H = ( H $ )  that fully determines the shape of 
N = 4  scf transformation and controls the behaviour of various objects on N = 4  SRSS 

[16,19] .  Note that most parts of the above relations, and those below, are also valid 
for N=2.  In this case after discarding, for example, quantities with the subscript 2 
we deal with the special even 2 x  2 matrix having a fixed permanent and satisfying (41, 
which becomes scf, HI, = 0. We call this property an N = 2 scf property and such a 
2 x 2 matrix an N = 2 scf matrix. Going to the general 4 x 4 block matrix H = ( H e )  we 
call it an N = 4  scf matrix, if the blocks H, satisfy (3)-(5). It is reasonable to dwell 
on their basic features. 

3. Permanent and scf matrices 

Le: A he a 2 x 2 mz:;ix wih eiiiiies froiii A, being the even pari ofa c0mp:ex Giassmaiiii 

( 9 )  

algebra [20]. Defining a scalar product, usually A x  B = ti ABT, one has 

per(A+ B )  =per  A+per  B + A  x BM 

and, in particular, 

per(A- K I )  = K 2 -  K tr A+per  A 

per(A-AMT)=2perA-trAZ.  

So that the permanent can he determined as  follows: 

per A = f A  x AM. 

This results also from the remarkable relation 

A ~ ~ A  = 

explaining why the N = 2  scf matrix Ascf defined by scfjAScf = 0 is so marked (we omit 
'N =2' in evident cases). It is worth comparing (12) with the usual ADTA = I det A, 
AD being a matrix of cofactors and I being the unit matrix. Hence, only for A,,, do 
many relations become symmetric under per A,,,@det A,,, and A ~ , o A E , .  For 
example, a per inverse matrix 

can be defined if E(per A,,,) # 0, where E is the body map [17] (every element of A. 
,,a3 LllC ll"l,l"CL par, ("uuy, ai,u LLlC Irlrp"rCnr pa,, ,>vu,,, >U ,rrc uuuy cusp u,scarus 
the latter). If A,,, is diagonal or off-diagonal then As;:P" = A;:. Furthermore, 

L^^ rL^ L^_ --... ,L*A.., ^__I .L̂  _:I _̂I.-. --- I I \  ^ ^  .I_̂  L-2.. --- _I: .... A. 

tr A:cf= a" +d'+[1+(-1)"1(bc)'" (14) 

and 

(:~~)"A,,, = (:::) A:,,= ( a d ) "  + (+ l )" (bc )" .  

So the bodies of the permanent and determinant of the scf matrix can only differ by 
sign or vanish; as for their souls, ( I S )  is the system of equations. Here the Binet-Cauchy 
formula for permanents [I81 reduces to the same form as for determinants: 

per(A,,t.B,,f) =per  A,,rper B,,, (16) 



3170 S Duplrj' 

and 

But the connection 

(2 perA,,f-trA:,,)(2perA,,f+trA:,r-tr2A,cf) = O  (18) 

between the permanent and the trace comes into existence only for the scf matrix and 
holds as a whole without vanishing each of the factors. It reflects the fact that AScf 
entries form the ring containing divisors of zero and proper ideals [17]. One can check 
that the scf property is preserved under usual multiplication. Therefore the scf matrices 
form a linear semigroup [Zl ]  to say the least. We call A,,, a body scf matrix if 
E (per A,,J # 0 and a soul one if &(per AJ = 0, but A,,f having the vanishing permanent 
is called a zero scf matrix. The body scf matrices form the linear group, being a 
subgroup of GL(2, Ao) [201. The scf property of the soul scf matrix is realized by virtue 
of the existence of divisors of zero among A,,, entries. The soul 2 x 2  scf matrices 
appear when studying the semigroup of N = 2  SCT transformations [22].  

Consider the scf property consequences in changing the complex basis to a co- 
ordinate one. Let A = U-'AU, where 

Then 

= U - ~ A ~ B M  U (19) 

and the main relation between the orthogonality on a coordinate basis and the scf 
property in the complex one is (see (12)) 

(20)  ATA = per A I  +scf, A(03 +io,) +scf2 A( cr3 - io,) 

U, being the Pauli matrices. It is easily seen that the body scf matrix A,,, after 
normalization by becomes similar to the O(2, Ao) matrix [ZO]. Such a trick 
is impossible for AScf being the soul scf matrix or zero one. 

Let B = (A,) be a 4 x 4  block matrix with entries from A. and E = (A,) = (U-'AU) 
be the similar one on a coordinate basis. Using (19) and (20) we obtain 

P, =(per A,, +per A , ) I +  (scf, A,, +scf, A2,)(03 +io,)  

Q =  u-I(A:,A;+A;,A;)u. 

(21) 

+ (scf, A,, +scf, A2,)(m3 - b , )  

Thus the N = 4 scf property resulting in gTg = R I  takes the form 

per A,,+per A2, = per Al2+per A,,= R 
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(cf (3)-(S)). We call B,,, satisfying (22) an N = 4  body, soul or zero scf matrix according 
to E ( R ) + O ,  E(R)=O or R=O.  The body B,,, normalized by fi is similar to Brie 
0(4,ho) [20]. To derive the determinant of the N = 4  scf matrix we use the relation 

det(AyTA,+AyTA,)=(perA,+perA,)2 (23) 

which holds for any A, satisfying scfi A ,  + scf, Al = 0. Then 

det B,,,= K R ~  ( 2 4 )  

and after normalization K = 1 leads to l?" E SO(4, An) and K = -1 results in in having 
the general O(4, Ao) symmetry (for the body Est,). The other types of B,,, do not allow 
such normalization. If some &(del A,) = 0 then we shall use a suitable relation from 
the general ones: 

det A , ,  det Azz 
det E,,, = R2 -= RZ - 

det A2> det A I l  

det A,, 
det A,, det A,2 

--R2- --R2-- det A,, - 

Note also that the permanent of the body Brcf has the form 

per &,= (per A , ,  -per AZI jiper A,,-perA,,j. (26 )  
The above relations are very useful and somewhat indispensable for the first-hand 
analysis of  N = 4 scf symmetry manifestations on a complex basis. 

4. Non-Euclidean plane and scf matrices 

Here we give attention to a fascinating niche for scf matrices. As is well known, any 
A,,, can represent a fractional h e a r  transformation of z E@',': 

which is called a per mapping if ac = bd = 0.  Since the scf property is preserved under 
matrix multiplication, whole per mappings generally form a semigroup. We first note 
that the N = 2 scf property (ac = bd = 0) coincides with some of the conditions for the 
per mapping to commute with a normal one [23]. Moreover, it is easily seen that a 
soul fixed point having e ( z . . . , ) = ~ ( b ) = O  appears here as 

In  addition to the conventional studies of f ( z )  [23,24] we can observe the following 
'mirror' condition to hold for the per mapping: 

which clarifies the terminology. For A8<f entries being real, we obtain the relations 
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and 

so that the isometric ’unit circle’ can be defined by Icz+dl=-. Further, it is 
natural to introduce a ‘cross ratio’ as follows: 

being invariant under a per mapping 

D’(f(s),f(z2),f(r,),f(Zq)) = D+(z,, z2, 2 3 ,  z4) = r (33) 
and having the properties of the usual cross ratio [23]. The group of zi permutations 
S: is homomorphic to a finite group consisting of six elements 

for E ( * )  f 0, of four elements for e(r) = 0 and of three elements for r = (-1 *&)I2 or 
for r =  1 (in the latter case the points form a ‘harmonic set’). The next step is to define 
the ‘distance’ from z ,  to z2 inside the ‘unit disk’ as 

d + ( i l , r 2 ) = : i i D + i z , , i , , z 3 , s , )  (35) 
where all points lie on the same ‘geodesics’ determined by z ,  and z2 only, while z3 
and z4 are end points of that on the ‘unit circle’. It can be shown that r is real if the 
points lie on the ‘unit circle’, and ‘angles’ between ’geodesics’ are also calculable in 
terms of the ‘cross ratio’. Using (31) we can choose the ‘distance’ on the ‘upper half 
plane’ now becoming the right plane (Re z > 0) in the following way: 

d+Rc(zI, z , )  =Arch 
Re z ,  Re z2 

We finally note that the per mapping satisfies 

Hence, the scf matrix represents the per mapping giving rise to the additional 
symmetry condition (29) on the complex plane. To find any meaning of j t  in line with 
the plane non-Euclidean geometry [23] we can surmise that the suitable ’Euclidean 
distance’ might be Jz, + z21. Then almost all related constructions of [23,24] could be 
repeated here with some evident changes. 

5. N =4 Berezinian and superdifferentials 

In the (1/4)-dimensional superspace the Berezin integration measure [25] transforms 
unde: the general superanalytic transformation Z + i? by means of the Berezinian 
Ber(Z/Z) (the superanalogue of the Jacobian), which on a complex basis can be 
presented as follows (for c(det H )  f0) :  

(38) 
ai/az+i:ai; /az+ e’;ae’:laz-(as’:/az,ae’;laz)(H-‘) 

Ber(i?/Z) = 
det H 
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where 

(39) 
- -  A F = D:i - (0:;;) ;,: - (0: e,:) 0: 

vanishes for the scf transformation due to (2). Further, using the scr condition (3)  
and the formula (24) for the determinant of the N = 4  scf matrix H (being the body 
scf matrix here) we obtain 

(40) 
K 

B e r ( i / Z )  =- 
J 

where 

J = per H , ,  +per Hz,  =per  H,,+ per H 2 2 .  (41) 

With the scr transformation serving as the transition function for the N = 4  SRS, the 
value of K is said to distinguish between the untwisted SRS ( K  = 1) and the twisted one 
( K  = -1) [16]. To define line integrals properly [26] and to investigate line bundles on 
an SRS [27] they introduce [14, 161 the Abelian (or basic) scf differentials dT:. The 
corresponding cotangent space is dual to the scr-invariant (014)-dimensional tangent 
subspace spanned by 0: only. So the Abelian scr differentials transform inversely to 
superderivatives d i = d . r H ,  D =  H E  (in matrix notation), which guarantees the scf 
invariance of the operator d.r D used to construct fermionic string action [12]. Besides, 
they satisfy the dual relation {dTt, dT;} = 28, dZ, where d Z  = d r +  0: de;+ 9;  de; 
transforms as d i  = J dZ. This relation can be interpreted as the N = 4 generalization 
of d i =  ( J ; / 8 r )  dz [16], and (since d Z  corresponds to the metric on  the complex N = 4 
superplane) J is the scaling factor for it. Note that for general N one has 

Rer(Z/Z) = %(A.! .H)‘*-” /N (42) 

d i  = [ K  Ber(f/Z)]2’‘2-N) d Z  

and for N # 2 one obtains the fundamental equation 

(43) 

which can be viewed as another equivalent definition of the transition functions for 
an N-extended SRS. 

To cover generalizing possibilities carrying further information about scf symmetry 
it is natural to bring all of the transformations satisfying (2) in, including those which 
meet some slackened invertibility requirements. It is also convenient to refer to them 
as N = 4 scr transformations forming a semigroup as a whole. They should next be 
classified in terms of J (41) since H is the N = 4  scf matrix (see section 3): the 
transformation satisfying ( 2 ) - ( 5 )  will be called a body, soul or zero transformation 
according to E ( J )  # 0, E ( J j  = 0 or j = 0. i t  is obvious that the body transformations 
are invertible and the N = 4 Berezinian (40) is well defined for them only, hence they 
form the subgroup ofthe full scf semigroup. The soul transformations have a non-trivial 
structure in the soul direction and become degenerate after the body mapping; also, 
they can be partially invertible. For N = 1, 2 the soul transformations have been 
considered previously [22, 281. 

6. The soul-extended split N = 4  SRSS 

The split N = 4 SRS is a special type of Riemann surface and has a spin structure. The 
corresponding supermanifold is said to be a vector bundle over a Riemann surface 
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with an even coordinate as the base coordinate and odd coordinates as  the fibre ones 
[14,16]. In this case the transition functions are 

i= f ( 2 )  

e'; = g ; ' ( z ) e ; + g $ + ( z ) e :  

and so the scr conditions (3)-(5) take the form 

per GI, + per G,, = per Gn2 + per G,, =f '(2) 

scf iGII+scfiG21=scfiG12+scfiG22=0 

G:,G;+ G:,G; = o 
G;,GE;"+ GLG? = G:;G; + G;;G; 

= G:,G%+ GLG? 
= G:;G;+G:;G; 

where 

(for the infinitesimal form of (44) see [l]). Now we assume the component functions 
from (44) to contain odd parameters and to have souls in general, while the shape of 
the transformations and the scf conditions remain the same as for the split case 
(44)-(48). This results in G=(Gu) being the N = 4  scf matrix (see section 31, here 
satisfying the strong additional restriction (48). The body N = 4  scf matrix G after 
normalization by becomes similar to G. E O(4, A,J, obeying det G, = k, which 
gives the above-mentioned kinds of soul-extended split SRSS. For them the Berezinian 
(40) reads 

Consider the structure of possible solutions of (45)-(48) in some detail. First suppose 
the scr transformation (44) to be the body transformations and the blocks G, to be 
the body N = 2  scf matrices (see (8) and below). Then we obtain 

i= f ( 2 )  

5; = g,(z)e^:+ h*(z)e*; (51) 

= -h l (z )e^:+g, (z )e*;  

the extra conditions 

g + ( z ) g - ( z ) +  h + ( z ) h - ( z )  = f ' ( z )  ( 5 2 )  

and 

g+(z)gYz)+ h X z ) h - ( z )  = g : ( z ) g - ( z ) +  h + ( z ) h L ( z )  (53) 

following from (45) and (48), where ê : = 0: exp(*q,) are the global rotations in the 
odd sector. Hereafter we list one solution from the evident corresponding set only. 
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The transformations having h+(z)  = 0, h - ( z )  = 0 and h+(z)  = h _ ( z )  = 0 form the separate 
subgroups of the scf semigroup. In the other situation the local rotations 

The most symmetric solutions of (54) and (55) are g ( z )  = h ( z )  =- and 9 ( z )  = 
p ( r ) .  I t  follows from ( 5 5 )  that for h ( z )  being pure soul and nilpotent, q ( z )  becomes 
constant while p ( z )  is not fixed, implying both a local rotation and a global one. Recall 
that for h( z )  = 0 local rotations do not arise at all. 

In case two of G, are the soul N = 2 scf matrices (i.e. having pure soul permanent, 
see (7) and (8)) and we can derive 

with the extra conditions 

where Roman and Greek letters are used to denote even functions @l.o+@'.o and odd 
ones C',o+@o.' respectively. The possible solutions of (57) are a ; ( z ) = a ; ( z )  and 
a : ( z ) = P :  exp(t,z). 

At the end of the section we give attention to the soul N =4 s a  transformation 
(being a global one in the odd sector for simplicity) which has the form 

- - A -  i = 4 a i a ,  a;a , z+c  

;; = (i e a ;  + 6;a;)a ; + ( f @a; + $a;) a ; ( 5 8 )  

i ; = ( * 8 a : +  i;a;)a:+(*@:a;+i;a:)ol~. 

I. The non-split N = 4  SRSE 

For brevity we confine ourselves to the non-split SRSE whose patching transition 
functions satisfy the additional 'chirality' constraints (which corresponds to the SU(2)- 
extended version of N = 4 s a  symmetry [29]) 

0,; S'?*J = 0 ( 5 9 )  

where n, m, = +, - and no summation here. Then H, becomes diagonal for m, = n 
and off-diagonal for m, = -n, leading to scf, H ,  = O  (see (8)), which implies that H, 
are the N = 2 scf matrices. So the superderivatives transform as 

~ ; = ( ~ ; ; p ) 6 ; " . .  (60) 
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resulting in the definite 'chirality' transitions. Let 

then the solution to the constraints (59) has the form 

$ ( a b )  = +;(zob)+ e ; g ; i - y z a h ) +  e : g ; i - b ( z o b )  + 20;0$A;(z) 

e';'") = +;(zed)+ e;g;;-yzcd) + e~g;;"(~'~)+282d8;~;(~) 
(61) 

where Zab  = r + 0 ° K "  + B b K b .  For all m, = n the 'chirality' on the SRS is preserved 
and so it can be called a 'chiral' N = 4  SRS (e.g. see [29]). We shall consider this case 
only. It follows that the scf conditions (3)-(5) lead to the matrix G (49) becoming the 
N = 4 scf matrix (see section 3). But now the additional restrictions on G differ from 
those of the split case (48) and read 

G ~ , G ~ ' ~ G ~ ~ G ~ + G ~ , G ~ ~ ~ G ~ ~ G ~ =  G ~ ~ G ~ + G ~ ~ G ~ + G ~ : G ~ + G ~ ~ G ~  (62) 

GT:G; + G:: G,M,' = 0. 

The restriction for the odd functions is 

(63) 

+;'(z)+;'(z) + + L : ' ( z ) + ; ' ( z ) +  A : ( z ) A ; ( z ) +  A ; ( z ) A ; ( z )  = o (64) 

having two inequivalent solutions 

A:(r) = $;'(z) G ( z )  +:'(z) (65) 

and 

A : ( z ) = A : ( z )  + X Z )  = + X Z ) .  (66) 

Consider first all G, to be the diagonal body N = 2 scf matrices. Then the scf 
transformation will be the body one. Solving the scf conditions (46), (47) and (62), 
(63) for this case and choosing the solution (65) we establish the general shape of the 
non-split 'chiral' N = 4 SRS transition functions in the following way: 

i = f ( z ) +  k [ + ; ( Z + ) g + ( Z + ) -  + ; ( Z t ) h - ( Z + ) l  

+ i ; [ + ; ( Z - ) g d z - )  - +;(Z-)h+(Z-)l 

+ $ [ + ; ( Z + ) g - ( Z + )  + + ; ( Z + ) h + ( Z + ) l  

+ & [ + ; ( Z - ) g + ( Z - )  + + : ( Z - ) h - ( Z - ) l  
+(a ;a ;+  s ; e , ) [ + ; ( z ) + ; ( p ) +  $;(z)$;(z)j' ( 6 7 )  

- ~ ~ * : ~ ^ : [ + ; ( Z ) + ; ( Z ) ] , - ~ ~ * ; B ^ ; [ + : ( Z ) + ; ( Z ) I ' +  o:e;e;e;fyz) 
e';= +:(Z*)+ B^:g,(Z')+ 8*:h,(Z*)+2@8^;+T'(z) 

8; = +;(Z*) - B^:h,(Z*) + % g F ( Z * )  + 26;$+:'(  z )  

where 

g + ( z ) g - ( z ) + h + ( z ) h - ( z )  = f ' ( z ) + + ~ ( z ) J r Y ' ( z ) +  +T(z )+ t ' ( z )  (68) 

and Z" = Z*". Further, in line with various subgroups of (67), we can choose two of 
the G, as being monomial or vanishing, which leads to the disappearance of one term 
from the LHS of (68). If this is not the case, two local rotations (54) arise and are 
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independent, as opposed to the split SRS, due t o  the absence of relation (55) between 
them now. Also, the non-split analogues of (56) and (58) can be constructed, as well 
as  the case with h ( z )  being pure soul. The N = 4  extension of the fractional linear 
transformation f ( z ) = ( a z f b ) / ( c z + d )  follows from (67) after choosing + : ( z ) =  
( y ; z + 6 : ) / ( c z + d ) .  This is another way (cf [l l])  to obtain the anomaly-free N = 4  
scf transformations. Going to the infinitesimal form of (67) one can derive the explicit 
shape of the generators of N = 4 scr transformations, and the commutation relations 
between them define the centreless N = 4 scf algebra (see [l:  71 for more details). 

Finally, we will have a look at the intriguing soul transformation (see section 5) 
involving no even functions at all: 

i = f ( z ) +  (CO;+ @;e;H$m+;(z)+ +ZZ)+;(Z)I' 
+ ~ ~ ~ ~ [ A ~ ( ~ ) + ; ( Z ) - A ~ ( Z ) $ ; ( Z ) ~  

+GI &;[A;(~)+;(Z) - ~ ; ( z ) $ ;  ( z j j  + sts; e; e;j~ryz) 

$= $f(Z*)+28*f&A:(r) 

e= +f(Z*)+28^fB^;A;(z) 

where 

f ' ( z )  = + ~ ' ( z ) + ~ ( r ) + + ; ' ( z ) ~ , t ( z )  (70) 

and (64) holds true. Note that for the fractional linear transformation (70) is solved by 

(69) 

and so it becomes degenerate after the body mapping. Moreover, it is not 'body 
preserving' [30] E ( $ ) #  F ( Z )  and it has no infinitesimal form, hence there is no corre- 
sponding superderivation algebra [31]. The soul transformations (69) describe the 
transitions from the body to the soul and form a subsemigroup of the full N = 4 scr 
semigroup. Evidently, they should have non-trivial structure in soul directions (see 
[3Z]) and could be viewed as a 'bridge' between the pure body and soul worlds. 

8. Conclusion 

We have obtained the finite N = 4 scr transformations and classified them in terms of 
the permanent of the matrices having some specific properties. The latter have been 
SlI IUICU as sucn allu 111 U J I I I I C G I I U I I  W L U l  LllC y,arrs IIuLI-=uI.II"G'lll gcurrrcrry. l l l C  r,la"llcSl 

shape of the transformations derived allows some of them to be used to N S 4  split 
and non-split SRS transition functions and various scr embeddings [331. 

The careful analysis shows that the scr symmetry has semigroup nature in general. 
The whole transformations viewed as solutions of the scr conditions (3)-(5) without 
reference to invertibility form the N = 4 scf semigroup SScr in fact. An element of S,,r 

mation under consideration: thus, S,,, is an infinite-dimensional semigroup. In the case 
of the functions being fixed, SScr is finitely generated and so the Cayley table characteriz- 
ing SScr entirely can be built in principle. Then a n  abstract semigroup corresponding 
t o  the semigroup of scf transformations S,,, could be constructed. Furthermore, it 

.*.. .I:-> L.->: -------.: :.L.L--,- ^ ^ _ ^ _  n..- , :A--  l7. :c... 

:- rlnG..nll -- ,.f o....n.-...-,+h - A A  fn lnr t innc  A d P r m i n i n n  sn rrrtm..r~,.- 17, "b,,,lbY a0 ., JV, "1 ""Yb," , , ,V"L . .  ...U*. "1." YY" .Y.."L."..* ".I_ ..... ". .a6 "1. O b ,  L.a',D,",- 
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should be noted that there is a subgroup G,& Sscf (which is the ordinary scf group) 
containing invertible elements and the unity (the identity transformation). The group 
GScf is disjoint [21] because SScf= G,,,u I,,r and GScfn lScr=0, where I,,, is a proper 
ideal of SaCr (the set of the soul and zero transformations). The transformations from 
lrcF are partial ones having the degenerated body second projection and non-vanishing 
defect. Next, it would be exciting to consider soul foliations and similar features (e.g. 
along the lines of [17,32]) from the semigroup viewpoint for refined building of a 

(rigorous consideration is a subject of separate study). 

is needed to understand the essence and manifestation of extended scf symmetry. 

- r r r e i h l m  n h i n r r  wh:,-h ir r 1 - 0 ~  tn C ~ C .  h..+ hoc +rqnr;tirrn f..nr+in-r f-nm C "~ ... &..I.. p""".",b "",.,.A WL....L. I O  I B " 1 U  L" .,R.,h "Y, L L Y l  L.Y.. I .LL"I.  I"I.C,.",,D ,,".L. UICf (La ', W,,Y,C 

The present findings and constructions show that a thorough further investigation 
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